428 research outputs found

    Providing Long-Term Participation Incentive in Participatory Sensing

    Full text link
    Providing an adequate long-term participation incentive is important for a participatory sensing system to maintain enough number of active users (sensors), so as to collect a sufficient number of data samples and support a desired level of service quality. In this work, we consider the sensor selection problem in a general time-dependent and location-aware participatory sensing system, taking the long-term user participation incentive into explicit consideration. We study the problem systematically under different information scenarios, regarding both future information and current information (realization). In particular, we propose a Lyapunov-based VCG auction policy for the on-line sensor selection, which converges asymptotically to the optimal off-line benchmark performance, even with no future information and under (current) information asymmetry. Extensive numerical results show that our proposed policy outperforms the state-of-art policies in the literature, in terms of both user participation (e.g., reducing the user dropping probability by 25% to 90%) and social performance (e.g., increasing the social welfare by 15% to 80%).Comment: This manuscript serves as the online technical report of the article published in IEEE International Conference on Computer Communications (INFOCOM), 201

    Distributed Time-Sensitive Task Selection in Mobile Crowdsensing

    Full text link
    With the rich set of embedded sensors installed in smartphones and the large number of mobile users, we witness the emergence of many innovative commercial mobile crowdsensing applications that combine the power of mobile technology with crowdsourcing to deliver time-sensitive and location-dependent information to their customers. Motivated by these real-world applications, we consider the task selection problem for heterogeneous users with different initial locations, movement costs, movement speeds, and reputation levels. Computing the social surplus maximization task allocation turns out to be an NP-hard problem. Hence we focus on the distributed case, and propose an asynchronous and distributed task selection (ADTS) algorithm to help the users plan their task selections on their own. We prove the convergence of the algorithm, and further characterize the computation time for users' updates in the algorithm. Simulation results suggest that the ADTS scheme achieves the highest Jain's fairness index and coverage comparing with several benchmark algorithms, while yielding similar user payoff to a greedy centralized benchmark. Finally, we illustrate how mobile users coordinate under the ADTS scheme based on some practical movement time data derived from Google Maps

    Impact of Modern Human Activities on the Songhua River’s Health in Heilongjiang Province

    Get PDF
    The Songhua River is the largest river in Heilongjiang province. During the past decades, intense human activities had extensive effects on the river. Protecting the Songhua River requires diagnosing threats on a large scale. Here we conducted the first comprehensive survey on the rivers’ health throughout the Heilongjiang province, investigating into land use of riversides, modern industries along riversides and other human factors. The results showed that water quality, habitat quality and biological assemblages of the Songhua River are facing deterioration. Farmland, sand dredging operations and tourism depending on water resource may be the main factors which lead to the unhealthy state. This study will be helpful for developing riparian zone restoration plans, or adopting both biological and engineering measures to minimize the degradation of the Songhua River

    QoS Scheduling in IEEE 802.16 Broadband Wireless Access Networks

    Get PDF
    With the exploding increase of mobile users and the release of new wireless applications, the high bandwidth requirement has been taking as a main concern for the design and development of the wireless techniques. There is no doubt that broadband wireless access with the support of heterogeneous kinds of applications is the trend in the next generation wireless networks. As a promising broadband wireless access standard, IEEE 802.16 has attracted extensive attentions from both industry and academia due to its high data rate and the inherent media access control (MAC) mechanism, which takes the service differentiation and quality of service (QoS) provisioning into account. To achieve service differentiation and QoS satisfaction for heterogenous applications is a very complicated issue. It refers to many fields, such as connection admission control (CAC), congestion control, routing algorithm, MAC protocol, and scheduling scheme. Among these fields, packet scheduling plays one of the most important roles in fulfilling service differentiation and QoS provisioning. It decides the order of packet transmissions, and provides mechanisms for the resource allocation and multiplexing at the packet level to ensure that different types of applications meet their service requirements and the network maintains a high resource utilization. In this thesis, we focus on the packet scheduling for difficult types of services in IEEE 802.16 networks, where unicast and mulitcast scheduling are investigated. For unicast scheduling, two types of services are considered: non-real-time polling service (nrtPS) and best effort (BE) service. We propose a flexible and efficient resource allocation and scheduling framework for nrtPS applications to achieve a tradeoff between the delivery delay and resource utilization, where automatic repeat request (ARQ) mechanisms and the adaptive modulation and coding (AMC) technique are jointly considered. For BE service, considering the heterogeneity of subscriber stations (SSs) in IEEE 802.16 networks, we propose the weighted proportional fairness scheduling scheme to achieve the flexible scheduling and resource allocation among SSs based on their traffic demands/patterns. For multicast scheduling, a cooperative multicast scheduling is proposed to achieve high throughput and reliable transmission. By using the two-phase transmission model to exploit the spatial diversity gain in the multicast scenario, the proposed scheduling scheme can significantly improve the throughput not only for all multicast groups, but also for each group member. Analytical models are developed to investigate the performance of the proposed schemes in terms of some important performance measurements, such as throughput, resource utilization, and service probability. Extensive simulations are conducted to illustrate the efficient of the proposed schemes and the accuracy of the analytical models. The research work should provide meaningful guidelines for the system design and the selection of operational parameters, such as the number of TV channels supported by the network, the achieved video quality of each SS in the network, and the setting of weights for SSs under different BE traffic demands
    • …
    corecore